Higher derivations on finitely generated integral domains
نویسندگان
چکیده
منابع مشابه
On Reductions of Finitely Generated Ideals in Integral Domains
√(f1,...,fd+1)R[X] [3,p.124]. The question is whether an ideal (f1,...,fd+1) R[X] can be chosen as a reduction of I. We only know the following case of affine domains, which was developed by G. Lyubeznik [4]: Let R be an n-dimensional affine domain over an infinite field k and let I be an ideal of R. Then I has a reduction generated by n+1 elements. He also posed the following conjecture: Let A...
متن کاملLocal higher derivations on C*-algebras are higher derivations
Let $mathfrak{A}$ be a Banach algebra. We say that a sequence ${D_n}_{n=0}^infty$ of continuous operators form $mathfrak{A}$ into $mathfrak{A}$ is a textit{local higher derivation} if to each $ainmathfrak{A}$ there corresponds a continuous higher derivation ${d_{a,n}}_{n=0}^infty$ such that $D_n(a)=d_{a,n}(a)$ for each non-negative integer $n$. We show that if $mathfrak{A}$ is a $C^*$-algebra t...
متن کاملHigher algebraic K-theory of finitely generated torsion modules over principal ideal domains
The main purpose of this paper is computing higher algebraic K-theory of Koszul complexes over principal ideal domains. The second purpose of this paper is giving examples of comparison techniques on algebraic K-theory for Waldhausen categories without the factorization axiom.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1974
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1974-0337923-2